Solve each equation. Check your answers.

1. \(\frac{2}{3}x = 10 \)
2. \(5t = \frac{10}{15} \)
3. \(\frac{6}{7}a = 9 \)
4. \(\frac{r}{11} = 12 \)
5. \(\frac{6b}{9} = 15 \)
6. \(7y = \frac{7}{8} \)
7. \(\frac{4}{5}d = 15 \)
8. \(4f = \frac{1}{9} \)
9. \(7q = \frac{3}{5} \)
10. \(\frac{7}{8}s = 14 \)
11. \(\frac{h}{12} = 6 \)
12. \(\frac{3}{10}c = \frac{2}{3} \)
13. \(\frac{5g}{6} = \frac{7}{12} \)
14. \(\frac{3k}{9} = \frac{5}{6} \)
15. \(5 \frac{1}{2}n = 3 \)

16. Anya worked \(8 \frac{1}{4} \) hours on Saturday and \(6 \frac{1}{4} \) hours on Sunday. She earned a total of $137.75 for both days combined. How much does Anya make per hour?

17. Ernest rode his bike \(6 \frac{1}{4} \) miles on Saturday and \(8 \frac{1}{2} \) miles on Sunday. He rode for a total of \(88 \frac{1}{2} \) minutes for both days combined. How long does it take him to ride a mile on his bike?
Solving Fraction Equations: Multiplication and Division

Practice C

Solve each equation. Check your answers.

1. \(\frac{5}{3}x = 10 \)
 \(x = 15 \)

2. \(5f = 15 \)
 \(f = 3 \)

3. \(\frac{4}{3}a = 9 \)
 \(a = \frac{27}{4} \)

4. \(12r = 12 \)
 \(r = 1 \)

5. \(5b + 2 = 22 \)
 \(b = 4 \)

6. \(7y + \frac{7}{3} = 7 \)
 \(y = \frac{1}{3} \)

Use related facts to solve each equation. Then check each answer.

1. \(\frac{4}{9} \cdot 3 = x \)
 \(x = 12 \)

2. \(\frac{3}{4} \cdot 4 = y \)
 \(y = 3 \)

3. \(\frac{3}{5}x = \frac{2}{3} \)
 \(x = \frac{2}{3} \cdot \frac{5}{3} = \frac{10}{9} \)

4. \(\frac{3}{10} x = 6 \)
 \(x = 20 \)

5. \(\frac{3}{5} \times 1 = z \)
 \(z = \frac{3}{5} \)

6. \(\frac{1}{3} x = 3 \)
 \(x = 9 \)

Challenge

Crawly Creature Equations

A millipede called the walkma planipes holds the record for the creature with the most legs—750! However, most millipedes have only 30 legs. Shown below are some other many-legged creatures.

Let \(L \) = the number of legs most millipedes have. Use this information to solve the equations and find how many legs each crawly creature has.

1. \(\frac{8}{15} \cdot \frac{3}{5} = \frac{2}{5} \)
2. \(\frac{5}{6} \cdot \frac{1}{3} = \frac{5}{18} \)
3. \(\frac{1}{3} \cdot \frac{1}{3} = \frac{1}{9} \)

Caterpillars: 16 legs
Spiders: 8 legs
Insects: 6 legs
Crabs: 10 legs

Problem Solving

Solving Fraction Equations: Multiplication and Division

1. The number of T-shirts is multiplied by \(\frac{3}{4} \) and the product is 18. Write and solve an equation for the number of T-shirts, where \(t \) represents the number of T-shirts.
 \(t \cdot \frac{3}{4} = 18 \); \(t = 24 \)

2. The number of students is divided by 18 and the quotient is \(\frac{5}{3} \). Write and solve an equation for the number of students, where \(s \) represents the number of students.
 \(s \div 18 = \frac{5}{3} \); \(s = 30 \)

3. The number of players is multiplied by \(\frac{2}{3} \) and the product is 25. Write and solve an equation for the number of players, where \(p \) represents the number of players.
 \(p \cdot \frac{2}{3} = 25 \); \(p = 37.5 \)

4. The number of chairs is divided by \(\frac{1}{3} \) and the quotient is 12. Write and solve an equation for the number of chairs, where \(c \) represents the number of chairs.
 \(c \div \frac{1}{3} = 12 \); \(c = 36 \)

5. Paco bought 10 feet of rope. He cut it into several 1 1/2-foot pieces. Which equation can you use to find how many pieces of rope Paco cut?
 A. \(\frac{1}{2} + 10 = x \)
 B. \(1 + x = 10 \)
 C. \(10 + x = \frac{5}{3} \)
 D. \(10x = \frac{5}{3} \)

6. Each square on the graph paper has an area of \(\frac{2}{5} \) square inch. What is the length and width of each square?
 A. \(\frac{1}{3} \) inch
 B. \(\frac{1}{2} \) inch
 C. \(\frac{1}{3} \) inch
 D. \(\frac{1}{5} \) inch

7. Which operation should you use to solve the equation \(6x = \frac{3}{4} \)?
 A. addition
 B. subtraction
 C. multiplication
 D. division

8. A fraction divided by \(\frac{2}{3} \) is equal to \(\frac{1}{2} \). What is that fraction?
 A. \(\frac{1}{3} \)
 B. \(\frac{1}{2} \)
 C. \(\frac{1}{3} \)
 D. \(\frac{1}{2} \)