AN IRRESISTIBLE INTEGRAL

MICHAEL KUMARESAN

Boros and Moll's classic book Irresistible Integrals contains a peculiar but beautiful formula of which we will outline a proof below. The result reads

$$
\int_{1}^{\infty} \frac{\{x\}-\frac{1}{2}}{x} d x=-1+\ln (\sqrt{2 \pi}) \approx-0.08106 \ldots
$$

Here $\{x\}$ denotes the fractional part of x.
To prove the result, one needs Stirling's asymptotic formula for $n!$:

$$
n!\sim \sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n}
$$

Stirling's formula is an asymptotic result which means that as $n \rightarrow \infty$, the relative error converges to zero. More precisely, we have

$$
\lim _{n \rightarrow \infty} \frac{n!}{n^{n+\frac{1}{2}} e^{-n}}=\sqrt{2 \pi}
$$

We will come back to this formula in due time. To begin to prove the main result, write:

$$
\ln \{n!\}=\ln \left(\prod_{k=1}^{n} k\right)=\sum_{k=2}^{\infty} \ln (k)
$$

Since

$$
\ln (k)=\int_{1}^{k} \frac{d x}{x}
$$

we have

$$
\ln \{n!\}=\sum_{k=2}^{n} \int_{1}^{k} \frac{d x}{x}
$$

Furthermore, if we subdivide the region of integration, we have

$$
\int_{1}^{k} \frac{d x}{x}=\sum_{j=1}^{k-1} \int_{j}^{j+1} \frac{d x}{x}
$$

So finally, we obtain

$$
\ln \{n!\}=\sum_{k=2}^{n}\left\{\sum_{j=1}^{k-1} \int_{j}^{j+1} \frac{d x}{x}\right\}
$$

We can now exchange the order of summation. To see why this is the case, let us write the first few values of k for the first sum:

$$
\begin{gathered}
k=2 \Rightarrow \int_{1}^{2} \\
k=3 \Rightarrow \int_{1}^{2}+\int_{2}^{3}
\end{gathered}
$$

$$
k=4 \Rightarrow \int_{1}^{2}+\int_{2}^{3}+\int_{3}^{4}
$$

and in general,

$$
k=n \Rightarrow \int_{1}^{2}+\int_{2}^{3}+\int_{3}^{4}+\cdots+\int_{n-1}^{n}
$$

Then in the second sum we sum all of these horizontally. This is equivalent to just performing the sum first vertically. In the end, we obtain:

$$
\begin{gathered}
\ln \{n!\}=(n-1) \int_{1}^{2} \frac{d x}{x}+(n-2) \int_{2}^{3} \frac{d x}{x}+(n-3) \int_{3}^{4} \frac{d x}{x}+\cdots+\int_{n-1}^{n} \frac{d x}{x} \\
\quad=\int_{1}^{2} \frac{(n-1)}{x} d x+\int_{2}^{3} \frac{(n-2)}{x} d x+\int_{3}^{4} \frac{(n-3)}{x} d x+\cdots+\int_{n-1}^{n} \frac{1}{x} d x
\end{gathered}
$$

With $1 \leq j \leq n-1$, each term in the last sum is of the form

$$
\int_{j}^{j+1} \frac{(n-j)}{x} d x=\int_{j}^{j+1} \frac{n-\lfloor x\rfloor}{x} d x
$$

because for the integration interval $j \leq x<j+1$, we have $\lfloor x\rfloor=j$. Thus

$$
\ln \{n!\}=\int_{1}^{n} \frac{n-\lfloor x\rfloor}{x} d x
$$

Since $\lfloor x\rfloor=x-\{x\}$, we have $n-\lfloor x\rfloor=n-x+\{x\}$. Plugging this in above yields

$$
\begin{aligned}
\ln \{n!\}= & \int_{1}^{n} \frac{n-x+\{x\}}{x} d x=\int_{1}^{n} \frac{n}{x} d x-\int_{1}^{n} d x+\int_{1}^{n} \frac{\{x\}}{x} d x \\
& =n \ln (n)-(n-1)+\int_{1}^{n} \frac{\{x\}}{x} d x \\
= & n \ln (n)-n+1+\frac{1}{2} \ln (n)+\int_{1}^{n} \frac{\{x\}-\frac{1}{2}}{x} d x \\
= & \left(n+\frac{1}{2}\right) \ln (n)-n+1+\int_{1}^{n} \frac{\{x\}-\frac{1}{2}}{x} d x \\
= & \ln \left(n^{n+\frac{1}{2}}\right)+\ln \left(e^{-n}\right)+\ln \left(e^{1+\int_{1}^{n} \frac{\{x\}-\frac{1}{2}}{x} d x}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& n!=n^{n+\frac{1}{2}} \cdot e^{-n} \cdot e^{1+\int_{1}^{n} \frac{\{x\}-\frac{1}{2}}{x} d x} \\
& \Rightarrow e^{1+\int_{1}^{n} \frac{\{x\}-\frac{1}{2}}{x} d x}=\frac{n!}{n^{n+\frac{1}{2}} \cdot e^{-n}}
\end{aligned}
$$

Now if we take the limit as $n \rightarrow \infty$, we can apply Stirling's formula and we obtain

$$
e^{1+\int_{1}^{n} \frac{\{x\}-\frac{1}{2}}{x} d x}=\sqrt{2 \pi}
$$

so that the result follows.

