AN IRRESISTIBLE INTEGRAL
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Boros and Moll’s classic book Irresistible Integrals contains a peculiar but beau-
tiful formula of which we will outline a proof below. The result reads
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Here {z} denotes the fractional part of x.
To prove the result, one needs Stirling’s asymptotic formula for n!:
nl ~ V2" tie ™

Stirling’s formula is an asymptotic result which means that as n — oo, the relative
error converges to zero. More precisely, we have
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We will come back to this formula in due time. To begin to prove the main result,
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Furthermore, if we subdivide the region of integration, we have
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So finally, we obtain
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We can now exchange the order of summation. To see why this is the case, let us
write the first few values of k for the first sum:

2
k:2¢/
1
2 3
k:3:/ +/
1 2
1



AN IRRESISTIBLE INTEGRAL 2

2 3 4
k:4:/+/ +/
1 2 3
2 3 4 n
k:né/Jr/ +/ +"'+/
1 2 3 n—1

Then in the second sum we sum all of these horizontally. This is equivalent to just
performing the sum first vertically. In the end, we obtain:
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With 1 < j <n —1, each term in the last sum is of the form
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because for the integration interval j < z < j + 1, we have |z| = j. Thus

In{n!} = /j n-lely,
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and in general,

Since |z =z — {z}, we have n — || = n — 2 + {z}. Plugging this in above yields
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Now if we take the limit as n — oo, we can apply Stirling’s formula and we obtain
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so that the result follows.



