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Boros and Moll’s classic book Irresistible Integrals contains a peculiar but beau-
tiful formula of which we will outline a proof below. The result readsˆ 1
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Here {x} denotes the fractional part of x.
To prove the result, one needs Stirling’s asymptotic formula for n!:

n! ⇠
p
2⇡nn+ 1

2
e

�n

Stirling’s formula is an asymptotic result which means that as n ! 1, the relative
error converges to zero. More precisely, we have
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We will come back to this formula in due time. To begin to prove the main result,
write:
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Furthermore, if we subdivide the region of integration, we have
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So finally, we obtain
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We can now exchange the order of summation. To see why this is the case, let us
write the first few values of k for the first sum:
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and in general,
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Then in the second sum we sum all of these horizontally. This is equivalent to just
performing the sum first vertically. In the end, we obtain:

ln{n!} = (n� 1)

ˆ 2

1

dx

x

+ (n� 2)

ˆ 3

2

dx

x

+ (n� 3)

ˆ 4

3

dx

x

+ · · ·+
ˆ

n

n�1

dx

x

=

ˆ 2

1

(n� 1)

x

dx+

ˆ 3

2

(n� 2)

x

dx+

ˆ 4

3

(n� 3)

x

dx+ · · ·+
ˆ

n

n�1

1

x

dx

With 1  j  n� 1, each term in the last sum is of the formˆ
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because for the integration interval j  x < j + 1, we have bxc = j. Thus

ln{n!} =

ˆ
n

1

n� bxc
x

dx
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Now if we take the limit as n ! 1, we can apply Stirling’s formula and we obtain
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so that the result follows.


