DALZELL'S INTEGRAL

MICHAEL KUMARESAN

In 1944, D.P. Dalzell (1898-1988) published a paper in the Journal of the London Mathematical Society in which he used an integral to give a nice decimal approximation to π. In this post, we outline his simple but elegant method.

Consider the integral

$$
I=\int_{0}^{1} \frac{x^{4}(1-x)^{4}}{1+x^{2}} d x
$$

After some algebra, we have

$$
I=\int_{0}^{1}\left(x^{6}-4 x^{5}+5 x^{4}-4 x^{2}+4-\frac{4}{1+x^{2}}\right) d x
$$

Performing the integration gives

$$
I=\left.\left(\frac{x^{7}}{7}-\frac{2 x^{6}}{3}+x^{5}-\frac{4 x^{3}}{3}+4 x-4 \tan ^{-1}(x)\right)\right|_{0} ^{1}=\frac{1}{7}-\frac{2}{3}+1-\frac{4}{3}+4-\pi
$$

This gives us the nice result:

$$
\int_{0}^{1} \frac{x^{4}(1-x)^{4}}{1+x^{2}} d x=\frac{22}{7}-\pi
$$

Since the integrand is always positive, we have $\frac{22}{7}>\pi$. Here are some other easy estimates. Since $1<1+x^{2}<2$ for $0<x<1$

$$
\int_{0}^{1} \frac{x^{4}(1-x)^{4}}{2} d x<\int_{0}^{1} \frac{x^{4}(1-x)^{4}}{1+x^{2}} d x=\frac{22}{7}-\pi<\int_{0}^{1} x^{4}(1-x)^{4} d x
$$

Evaluating these integrals gives:

$$
\frac{1}{2}\left(\frac{1}{5}-\frac{2}{3}+\frac{6}{7}-\frac{1}{2}+\frac{1}{9}\right)=\frac{1}{1260}<\frac{22}{7}-\pi<\left(\frac{1}{5}-\frac{2}{3}+\frac{6}{7}-\frac{1}{2}+\frac{1}{9}\right)=\frac{1}{630}
$$

Multiplying the inequality by -1 yields:

$$
-\frac{1}{630}<\pi-\frac{22}{7}<-\frac{1}{1260}
$$

So that

$$
\frac{22}{7}-\frac{1}{630}<\pi<\frac{22}{7}-\frac{1}{1260}
$$

This gives us an upper and lower bound on π to five decimal places:

$$
3.14127<\pi<3.14206
$$

