BERNOULLI'S INTEGRAL

MICHAEL KUMARESAN

In 1697, John Bernoulli evaluated the integral

$$
\int_{0}^{1} x^{x} d x
$$

We examine how to compute this integral, as well as some other similar ones:

$$
\begin{aligned}
& \int_{0}^{1} x^{-x} d x \\
& \int_{0}^{1} x^{x^{2}} d x \\
& \int_{0}^{1} x^{\sqrt{x}} d x
\end{aligned}
$$

To find expressions for these integrals, we will need to use the Gamma function.

Euler's Gamma Function

In two letters in 1730 , Leonard Euler created the gamma function, $\Gamma(n)$. Legendre proposed an integral definition for this function:

$$
\Gamma(n)=\int_{0}^{\infty} e^{-x} x^{n-1} d x, \quad n>0
$$

We can easily compute the gamma function for $n=1$:

$$
\Gamma(1)=\int_{0}^{\infty} e^{-x} d x=1
$$

Using integration by parts, we have

$$
\Gamma(n+1)=n \int_{0}^{\infty} e^{-x} x^{n-1} d x
$$

This gives us the functional equation for the gamma function

$$
\Gamma(n+1)=n \Gamma(n)
$$

In particular, we have, for $n \in \mathbb{Z}^{+}$,

$$
\begin{aligned}
& \Gamma(2)=1 \cdot \Gamma(1)=1 \\
& \Gamma(3)=2 \cdot \Gamma(2)=2! \\
& \Gamma(4)=3 \cdot \Gamma(3)=3!
\end{aligned}
$$

and so on. In general:

$$
\begin{gathered}
\Gamma(n+1)=n! \\
\Rightarrow \Gamma(n)=(n-1)!, \quad n \geq 1
\end{gathered}
$$

This intimate connection between the gamma function and the factorial function was in fact Euler's original motivation for studying $\Gamma(n)$. The gamma function can
also be extended for all real and complex arguments - but this is best saved for a discussion some other time. Our particular interest at the moment is to use the gamma function to compute integrals. Here is a simple example of how it can be used in the context of integration.
Example. Find the value of

$$
\int_{0}^{\infty} e^{-x^{3}} d x
$$

By making the change of variable $y=x^{3}$, we obtain:

$$
\int_{0}^{\infty} e^{-x^{3}} d x=\int_{0}^{\infty} e^{-y} \frac{d y}{3 y^{\frac{2}{3}}}=\frac{1}{3} \int_{0}^{\infty} e^{-y} y^{-\frac{2}{3}} d y
$$

This is simply the definition of the gamma function with $n-1=-\frac{2}{3} \Rightarrow n=\frac{1}{3}$. So we have

$$
\int_{0}^{\infty} e^{-x^{3}} d x=\frac{1}{3} \Gamma\left(\frac{1}{3}\right)
$$

A Lemma

To compute the integrals above, we will need the following lemma.

Lemma.

$$
\int_{0}^{1} x^{m} \ln ^{n}(x) d x=\frac{(-1)^{n} n!}{(m+1)^{n+1}}
$$

Proof. Make the change of variable $u=-\ln (x) \Rightarrow x=e^{-u}$. Then we have

$$
\int_{0}^{1} x^{m} \ln ^{n}(x) d x=\int_{\infty}^{0} e^{-u m}(-u)^{n}\left(-e^{-u}\right) d u=(-1)^{n} \int_{0}^{\infty} u^{n} e^{-(m+1) u} d u
$$

Now let $t=(m+1) u$, so that

$$
\begin{gathered}
(-1)^{n} \int_{0}^{\infty} u^{n} e^{-(m+1) u} d u=(-1)^{n} \int_{0}^{\infty}\left(\frac{t}{m+1}\right)^{n} e^{-t} \frac{d t}{m+1} \\
=\frac{(-1)^{n}}{(m+1)^{n+1}} \int_{0}^{\infty} t^{n} e^{-t} d t
\end{gathered}
$$

But this last integral is simply $\Gamma(n+1)$

Bernoulli's Integral

Now we are ready to evaluate Bernoulli's integral. We begin with the identity

$$
x^{c x^{a}}=e^{c x^{a} \ln (x)}
$$

where a and c are constants. Then, since $e^{x}=1+x+\frac{x^{2}}{2!}+\ldots$, we have

$$
x^{c x^{a}}=1+c x^{a} \ln (x)+\frac{1}{2!} c^{2} x^{2 a} \ln ^{2}(x)+\frac{1}{3!} c^{3} x^{3 a} \ln ^{3}(x)+\cdots
$$

so that
$\int_{0}^{1} x^{c x^{a}} d x=\int_{0}^{1} d x+c \int_{0}^{1} x^{a} \ln (x) d x+\frac{c^{2}}{2!} \int_{0}^{1} x^{2 a} \ln ^{2}(x) d x+\frac{c^{3}}{3!} \int_{0}^{1} x^{3 a} \ln ^{3}(x) d x+\ldots$
Now each of these integrals can be evaluated using the Lemma above:

$$
\int_{0}^{1} x^{c x^{a}} d x=1-\frac{c}{(a+1)^{2}}+\frac{c^{2}}{2!}\left\{\frac{2!}{(2 a+1)^{3}}\right\}-\frac{c^{3}}{3!}\left\{\frac{3!}{(3 a+1)^{4}}\right\}+\frac{c^{4}}{4!}\left\{\frac{4!}{(4 a+1)^{5}}\right\}-\ldots
$$

$$
\int_{0}^{1} x^{c x^{a}} d x=1-\frac{c}{(a+1)^{2}}+\frac{c^{2}}{(2 a+1)^{3}}-\frac{c^{3}}{(3 a+1)^{4}}+\frac{c^{4}}{(4 a+1)^{5}}-\ldots
$$

With $c=a=1$, we have Bernoulli's integral:

$$
\int_{0}^{1} x^{x} d x=1-\frac{1}{2^{2}}+\frac{1}{3^{3}}-\frac{1}{4^{4}}+\frac{1}{5^{5}}-\cdots \approx 0.78343 \ldots
$$

With $c=-1, a=1$, we have:

$$
\int_{0}^{1} x^{-x} d x=1+\frac{1}{2^{2}}+\frac{1}{3^{3}}+\frac{1}{4^{4}}+\frac{1}{5^{5}}-\cdots \approx 1.29128 \ldots
$$

Incidentally, this can be written to give this remarkable formula:

$$
\int_{0}^{1} \frac{1}{x^{x}} d x=\sum_{k=1}^{\infty} \frac{1}{k^{k}}
$$

With $c=1, a=2$, we have:

$$
\int_{0}^{1} x^{x^{2}} d x=1-\frac{1}{3^{2}}+\frac{1}{5^{3}}-\frac{1}{7^{4}}+\frac{1}{9^{5}}-\cdots \approx 0.896488 \ldots
$$

Finally, with $c=1, a=\frac{1}{2}$, we have:

$$
\int_{0}^{1} x^{\sqrt{x}} d x=1-\frac{1}{\left(\frac{3}{2}\right)^{2}}+\frac{1}{\left(\frac{4}{2}\right)^{3}}-\frac{1}{\left(\frac{5}{2}\right)^{4}}+\frac{1}{\left(\frac{6}{2}\right)^{5}}-\cdots \approx 0.658582 \ldots
$$

Collecting all of our formulas, we have the following lovely results:

$$
\begin{gathered}
\int_{0}^{1} x^{x} d x=1-\frac{1}{2^{2}}+\frac{1}{3^{3}}-\frac{1}{4^{4}}+\frac{1}{5^{5}}-\cdots \approx 0.78343 \ldots \\
\int_{0}^{1} x^{-x} d x=1+\frac{1}{2^{2}}+\frac{1}{3^{3}}+\frac{1}{4^{4}}+\frac{1}{5^{5}}-\cdots \approx 1.29128 \ldots \\
\int_{0}^{1} x^{x^{2}} d x=1-\frac{1}{3^{2}}+\frac{1}{5^{3}}-\frac{1}{7^{4}}+\frac{1}{9^{5}}-\cdots \approx 0.896488 \ldots \\
\int_{0}^{1} x^{\sqrt{x}} d x=1-\left(\frac{2}{3}\right)^{2}+\left(\frac{2}{4}\right)^{3}-\left(\frac{2}{5}\right)^{4}+\left(\frac{2}{6}\right)^{5}-\cdots \approx 0.658582 \ldots
\end{gathered}
$$

By the way, Bernoulli was so fascinated by this beautiful result that he called it his "series mirabili" ("marvelous series"). I couldn't agree with him more.

