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In 1697, John Bernoulli evaluated the integralˆ 1
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We examine how to compute this integral, as well as some other similar ones:ˆ 1
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To find expressions for these integrals, we will need to use the Gamma function.

Euler’s Gamma Function

In two letters in 1730, Leonard Euler created the gamma function, �(n). Le-
gendre proposed an integral definition for this function:
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We can easily compute the gamma function for n = 1:
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Using integration by parts, we have
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This gives us the functional equation for the gamma function

�(n+ 1) = n�(n)

In particular, we have, for n 2 Z+,

�(2) = 1 · �(1) = 1

�(3) = 2 · �(2) = 2!

�(4) = 3 · �(3) = 3!

and so on. In general:
�(n+ 1) = n!

) �(n) = (n� 1)!, n � 1

This intimate connection between the gamma function and the factorial function
was in fact Euler’s original motivation for studying �(n). The gamma function can
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also be extended for all real and complex arguments - but this is best saved for a
discussion some other time. Our particular interest at the moment is to use the
gamma function to compute integrals. Here is a simple example of how it can be
used in the context of integration.

Example. Find the value of ˆ 1
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By making the change of variable y = x
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This is simply the definition of the gamma function with n� 1 = � 2
3 ) n = 1
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So we have ˆ 1
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A Lemma

To compute the integrals above, we will need the following lemma.

Lemma. ˆ 1
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Proof. Make the change of variable u = � ln(x) ) x = e
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Now let t = (m+ 1)u, so that
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But this last integral is simply �(n+ 1) ⇤

Bernoulli’s Integral

Now we are ready to evaluate Bernoulli’s integral. We begin with the identity
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Now each of these integrals can be evaluated using the Lemma above:ˆ 1
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With c = a = 1, we have Bernoulli’s integral:ˆ 1
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With c = �1, a = 1, we have:ˆ 1
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Incidentally, this can be written to give this remarkable formula:ˆ 1
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With c = 1, a = 2, we have:ˆ 1
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Collecting all of our formulas, we have the following lovely results:
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By the way, Bernoulli was so fascinated by this beautiful result that he called it
his “series mirabili” (“marvelous series”). I couldn’t agree with him more.


